NUMERICAL CALCULATION OF THE PROBLEM
OF COOLING OF A SPHERICAL VOLUME OF
NONEQUILIBRIUM-IONIZED RADIATING HELIUM

S. P. Popov UDC 533.6.011

The method is described and the results are presented for numerical calculations of a system
of equations of nonsteady gasdynamics, radiation transfer in the continuous spectrum, and the
kinetics of collisional ionization and ionization by radiation, which describe the dispersion and
cooling of a spherical volume of He. A comparison is made with calculations performed on the
assumption of thermodynamic equilibrium.

In the study of nonsteady gasdynamic effects in real gases it is necessary to take info account the ratio
between the rates of change v)1 in the macroscopic parameters E, p, and u and the rates vg of processes
leading to the establishment of thermodynamic equilibrium (ionization, excitation, etc.). In many problems in
regions of continuous flows the inequality vyy < vy is satisfied. In this case each gas particle at a given time
is in a state of equilibrium corresponding to the slowly varying macroscopic parameters. The quantities
characterizing a real gas are functions only of E and p, and they can be calculated separately from the cal-
culations of the gasdynamic motion. In regions of a sharp change in the gasdynamic quantities, such as in
regions of shock waves, the criterion for the onset of equilibrium may be violated. In this case there is a
nonequilibrium zone in which the state of the gas is determined by the kinetics of the physical processes tak-
ing place in it. If the extent of this zone is insignificant in comparison with the characteristic dimensions of
the entire problem, where the condition of equilibrium is satisfied, then its effect on the motion of the gas as
a whole can be neglected and the gasdynamics can be calculated from equilibrium theory.

With a strong decrease in vg or an increase in vy the equilibrium condition vy < vy may be dis-
rupted in the entire region of continuous flows. This is realized, for example, in problems of the streamline
flow over bodies by a rarefied gas {1], since v changes sharply with a change in density, and in problems on
the heating of a gas by focused radiation, when a decrease in the characteristic dimensions to fractions of
millimeters leads to an increase in vy and the fulfillment of the condition vy > vE. Because of the interac-
tion of the kinetics and gasdynamics in these cases the joint solution of the corresponding equations is neces-
sary. In[1] the factor simplifying the numerical calculations is the steady nature of the process. Problems
on the heating of a gas by a powerful source of radiation and its subsequent dispersion, which include the
studies of the present work, are nonsteady.

The process of dispersion and cooling of a spherical volume (with characteristic dimensions of ~1 mm)
of high-temperature He plasma (T ~10 eV) is studied in the present work with allowance for the kinetics of
ionization and energy transfer by radiation in the continuous spectrum. The stage of formation of the plasma
under the effect of radiation is not considered in this case. It is assumed that its heating occurs so fast that
the gas is not set into motion during the action of the radiation pulse. The system of equations describing the
dispersion and cooling is close to that derived in [2], but in contrast to [2, 1] a more complex mechanism of
emission and ionization processes is assumed here.

The system of gasdynamic equations has the form

dpiat -+ douldr = — 2pulr;
dpu/dt + dpu/or = — dplor — 2pudir; (1)
dE[dt + E + pyu/dr = — (E + p)2ulr — q.
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The following units of measurement of the quantities are adopted here and below: T, I;, L, and v, eV; py =
1.77-1074 g/cma; Ty, cm; Uy = 0.5° 10% em/ sec; tg=2° 1078 sec. The system (1) is supplemented by thermo-
dynamic equations in which the electron excitation energy of the atoms and ions is not taken into account:

e = 32Tp + ey 1p + a{I; + LYo, p = To(1 + a,), o, = o + 20z, (2)

The values of the nonequilibrium degrees of ionization oy and «, are determined by the following re-
actions: for collisional ionization A + ¢ = A" + 2¢, A"+ e == A" + 2e; for ionization by radiation A + v =
A"+ e, A"+ hw 5 A™ + e. Processes connected with the excited states of the atoms and ions and line emis-
sion are not included in the analysis. With these assumptions the equations of ionization kinetics take the
form

oD | dolpu Co (V)

- T = — Ao Notyp®05v (14T + 2) exp (— IyT) (1 — L) — 5\

dQdv — 2"3‘0” (3)

N 7 . ¢ fC 2
B | DB — o, Nytep®ow (/T + 2) exp (— LiT) (1 — L) +§g 1) g gy . 205t

@ toay + =1 o, = o + 20y Ly = 02,/ King; Ly = a2,/ Kya;
, (exp (v/T) — 1) Ig (v)

Co,1 (v)=00,1NyOov,1v {1— Lo zexp(—v/ T){Lo,i P = ng I{v, 9)]:
6o = 0.13-10-17. T, em¥% o, = 0.41.10-13. T em¥ ¢ = 6.7-107. T%;
K,,, = (6.06-10%g,,,/N o080, ) 7%/ 2 exp {— I,,./TY;
go=1; g, = 2; gy, = 1; Iglv) = Cv¥/[exp(W/T) — 1].

The constant C includes the factor 2h/c? and quantities which make the energy, time, and frequency dimen-
sionless; I(v, Q) is found from the radiation transfer equation, which in a nonequilibrium medium along a
selected direction and in a unit frequency interval has the form
dl{v, Q)/ds = —u{l — exp(—~w’]‘))(IE(x) — I(y, Q)) — #,Colv) — %1y Cy(v); (4)
Aoy = 60»1\ 0% Hiy = 01 No2i05 % = “ge T Hye T Ypes

2
i = 01N ooclocep ; e = Ggel\/ 00%.220% Moe = T o Ngogtep?.

The first term in (4) allows for processes of absorption and emission in free—free transitions in the
fields of an atom and of singly and doubly ionized atoms. The cross sections for these processes, as for
photoionization, were taken from [3]. The value used for oy is the same as that in [4]. With the assumptions
made, the expression for q in the system of gasdynamic equations (1) becomes determining:

w

= | n{l —exp(—viT)) Y([E (v) — I (v, Q))dQdv + j 2oy (v) dQdv - f Y/wcl (v) dQdv. (5)
Q

In the case of thermodynamic equilibrium the following system of algebraic equations is analyzed instead
of (3):
ey = Ky ayola, = Ky
ay oyt o =1 o, = a, + 20, (6)

This system together with (2), with the values of E, p, and u assigned, determines T, oy, and ay. The radi-
ation transfer equation (4) in a nonequilibrium medium is

dI(v, Q)/ds = — (x + 74y — z)(t — exp( —T)( Iglv) — (v, Q)). (7)

For the system of equations (1)-(5) we assigned the boundary conditions pu=0 and u=0 at r=0; u =0,
p=1, T=0.03,and oy = @y =0 at r =~ and we assumed the absence of radiation fluxes directed toward the
center of the sphere. To clarify the effect of ionization nonequilibrium on the gas flow the problem, with the
same initial data and boundary conditions, was caleulated under two different assumptions: complete equili-
brium [the system of equations (1), (2), (5)-(7)] and the absence of ionization equilibrium [the system of equa-
tions (1)-(5)], with allowance for radiation and without it.

Let us go on to a brief description of the method of the calculations. The identical form of Egs. (1) and
(3) made it possible to use the same algorithm for their solution. The basis of this algorithm is described in
detail in [5]. Its simplest realization was chosen: an implicit system with an explicit antidiffusion step which
does not depend on the velocity u. The solution of (1) and (3) was performed in the same space and time grids.
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The system (2), with E, p, u, oy, and o, known at each point of space and at each moment of time from the
solution of (1) and (3}, determined T and p.

The emission intensity I(v, ) was found through the direct numerical solution of (4) at each point of

~ space. Here the frequency grid was not taken as uniform but was bunched in the regions of small v (the
region of free —free transitions), of frequencies y ~ I; (the region of photoionization of an atom), and of
frequencies v ~ I, (the region of photoionization of an ion). Im all 30 points were taken. The grid of angles
was taken as uniform and independent of the coordinate d¢ = 7/12. Because of the large expenditure of
machine time for the solution of the radiation transfer equation (4) it was solved with five times wider spac-
ing than (1) or (3). The value of I(v, Q) obtained in the solution of (4) for the preceding time was substituted
into (1) and (3) in the intermediate time layers. In the case of complete thermodynamic equilibrium the sys-
tems (2) and (6) were solved by the iteration method.

As the initial data in the version of the calculation presented below we assigned the following values of
the quantities: temperature profile (curve 0 in Fig. 1), p =1, u =0, o and @, are the equilibrium values
corresponding to these parameters, initial radius of heated region 0.375 mm. Before going on to a descrip-
tion of the results of the calculations, let us estimate the characteristic times for the establishment of tem-
perature balance. The principal mechanism of temperature equalization in an ionized gas is electron colli-
sions and the characteristic time of this reaction at the initial moment is ~0.5-107 sec, which is consider-
ably less than the characteristic gasdynamic time of ~107% sec. Therefore, the initial stage of dispersion
can be considered in a one-temperature approximation. The time of establishment of ionization equilibrium
at the initial moment is 107°-10710 gec, i.e., the assignment of @y and a; in the equilibrium approximation is
justified. The determination of the distributions of T, @y, and g, at the initial time, as was indicated above,
goes beyond the framework of the present report, and the algorithm constructed permits their arbitrary
assignment, in particular, corresponding to exact calculations of breakdown in He.

Let us examine a direct description of the results of the calculation. The following notation are adopted
in Figs. 1-5: curve 1) calculation by the theory of nonequilibrium ionization without allowance for radiation;
2) the same with allowance for radiation; 3) calculation by equilibrium theory without allowance for radia-
tion. The coordinates r =1, 2, 3, etc., correspond to the physical dimensions 0.125, 0.250, 0.375 mm, etc.,
and the calculating step along the coordinate equals 0.0125 mm. The temperature profiles at the time 13.6
nsec after the start of the dispersion are compared in Fig. 1. The shock wave has the coordinate 4.2 and the
contact discontinuity has the coordinate 3.5. The greatest difference between curve 1 and curve 2 is in the
region of r < 2.5. The propagation velocities of the shock wave and the contact discontinuity are about the
same for all the versions of the calculations (curves 1-3), as are the distributions of p and u. The distribu-
tion of @; for the same time is presented in Fig. 2. It is seen that in the central region of flow o in the
equilibrium case is about two times larger than oy, which is explained by a decrease in the recombination
rate during collisions with a decrease in temperature and density (by this time p is on the order of 0.1 in
the region of r < 3). In the region of r >3 we have p ~ 3 and the ionization and recombination rates are
fully adequate to maintain ¢y ~ oyE. A detailed comparison of the o and 4 profiles is hindered, however,
because these concentrations themselves depend on oy and oy, the relationship between which at this time
is shown in Fig. 3. The tendency toward ""quenching'' at a lower temperature and density is displayed more
clearly for this component of the gas. It is seen in Figs. 1-5 that the allowance for radiation does not strongly
alter the profiles of the quantities obtained. This is explained by the fact that the temperature decreases
rather rapidly and, in addition, the region is optically transparent for a large section of the spectrum v < I4
which includes the maximum of the equilibrium radiation at temperatures below 7 eV, and therefore the radi-
ation emanating from it is much less than the corresponding black-body radiation,

The distribution of T at the time 20 nsec is presented in Fig. 4. The shock wave has traveledto r=5

174



2} 1.0
T ) x
]
i
"\\3 }il
\\ \
. i
0,5 ~ ~ :
i N i
{
i \v;\'\
__./ !
‘\
| |
r E A \j
6 0 2,5 5,0
Fig. 4 Fig. 5

and the contact discontinuity has moved to r =4. About 450 calculating steps in time have been made by this
time. The difference between the temperature calculated by the equilibrium theory and the nonequilibrium
value is on the order of 30%. The appearance of a compression wave moving toward the center is observed
on curve 1 in the region of r < 1.4. Curve 3 shows the distribution of T in the nonequilibrium case at a later
time, 23 nsec (without radiation). The compression wave reaches almost to the center and heats the gas to
6 eV (p is ~0.3 at the center in this case). Such a strong wave is not observed in the equilibrium version.

The values of a4 and oy at the time 20 nsec are compared in Fig. 5. One must conclude from the
calculations presented that allowance for the nonequilibrium nature of the ionization in the problem of the
cooling of a spherical volume of He with T ~ 10 eV, r ~ 0.37 mm, and a normal initial density leads, first
of all, to lower temperatures averaged over the volume (by 30-40%), higher degrees of second ionization (by
about two times), and, correspondingly, lower degrees of first ionization for times corresponding to disper-
sion to dimensions exceeding the initial dimensions by two times; secondly, it leads to the appearance of a
compression wave moving toward the center, which is absent by this time in the equilibrium calculations.
The ionization nonequilibrium and energy transfer by radiation do not have a significant effect on the velocity
of expansion of the hot region and the propagation of the shock wave in the given calculation,

CONVENTIONAL NOTATION

u, gas velocity; p, density; p, pressure; E, total energy; e, internal energy; g, energy losses of matter
through radiation; T, temperature of the electrons and atoms; «p, o, @y, ¢, nonequilibrium concentrations
of atoms, of singly and doubly ionized atoms, and of electrons, respectively; o, U E, Qo E» OeE, €quilibrium
values of these concentrations; Ky, K,, ionization equilibrium constants; I, I,, He ionization potentials; g,
g1, 8, corresponding statistical weights; I(v, Q), spectral intensity of the radiation per unit frequency inter-
val per unit solid angle; Ig(v), its equilibrium value; v, frequency of the radiation; dv, frequency interval;
dQ, element of solid angle; Ny, Loschmidt number; M, mass of an atom; v, mean thermal velocity of the
electrons; ¢y, gy, collisional ionization cross sections for atoms and singly charged ions; oy, photoioniza-
tion cross section for atoms (¥, is the corresponding spectral linear absorption coefficient); oy, photo-
ionization cross section for singly charged ions (%y,); Gpe, Oyes Oges Cross sections for bremsstrahlung ab-
sorption by electrons in the fields of an atom and of singly and doubly charged ions, respectively (%gg, ygs
Yoe).
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